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QUANTIZATION BY COSMIC BACKGROUND RADIATION

James Dehn

Abstract

In this paper we suggest that various modes in the cosmic background
radiation field may account for the discrete properties exhibited by small
systems. In particular, this view is applied to the one-, two- and three-
dimensional oscillators and the hydrogen atom, systems which were treated by
Schrodinger in his first papers on quantum mechanics. The usual energy
formulas for the above systems are derived using this point of view,
together with some indication of how transition probabilities might also be
calculated. A connection between de Broglie's associated wave and a free
mass moving in the cosmic background is also discussed. Analogs of the
uncertainty and correspondence principles are briefly mentioned as are some
of the implications this view might have for interpreting quantum theory. In
this view particles and waves are separate, interacting entities and not
complementary aspects of the same thing.
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I. Introduction

In 1987 we celebrated the centennial of the birth of Erwin Schrodinger
who devised the wave-mechanical version of quantum mechanics and showed its
equivalence to the matrix formulation of Heisenberg [1]. Schrodinger was
inspired by de Broglie's idea that a wave should be associated with particle
motion. He wrote a wave equation which showed how the integers of earlie:
theories could arise in a natural way. However, in spite of the success of
his method, he was not satisfied with his own creation. At the end of the
fourth part of his series of papers on Quantization as a Problem of Proper
Values he discussed the physical significance of his wavefunction as the
amplitude of a weight function in configuration space. In this matter he
considered it a paradox that a system configuration should be a
superposition of all imaginable configurations. He was uncomfortable with
such a description and supposed that

"there is something tangibly real behind the present conception also,
namely, the very real electrodynamically effective fluctuations of the
electric space density. The T-function is to do no more and no less than
permit the totality of these fluctuations being mastered and surveyed
mathematically by a single partial differential equation." [2]

In other words, Schrodinger viewed quantum mechanics as a very useful
tool which does not give a completely satisfactory description of reality, a
minority opinion which he shared with Einstein. In particular, he viewed the
notion of energy levels as a calculational convenience rather than a basic
reality which permitted no further speculation. In his paper on The Exchange
of Energy accorcing to Wave Mechanics he expressed his distrust of the
"axiomatic unintelligibility" of quantum postulates and his preference for
some kind of resonance theory. In particular, if someone were to object that
these postulates have been confirmed beyond doubt by experiment, he would
reply:

"Yes, I do question whether it is not very much more to the point to push
the idea of the frequency of the de Broglie wave into the foreground ....

"I cannot help feeling that to admit the quantum postulates in
addition to the resonance phenomenon is to accept two explanations for
the same thing." [3]

2. Cosmic Background Radiation

Although a remnant cosmic background radiation was predicted as early
as 1948 [4], it was not until 1965, four years after Schrodinger's death,
that measurements by Penzias and Wilson [5] revealed the presence of an
isotropic, unpolarized radiation field falling upon earth without seasonal



variation. Dicke and co-workers [6] assumed that this radiation fills the
universe and interpreted it to be the remnant of a "big bang" in which the
universe had its origin. According to this model, very early in its history
the universe was a relatively compact oven in which radiation coexisted with

10
matter at temperatures in excess of 10 K, presumably with a spectral peak

21 -1 11
near a frequency v - 10 s (wavelength A - 10 cm). As the universe
expanded, it cooled down until the background radiation field at present has

11 _1 -1
a peak near v = 10 s (A = 10 cm) corresponding to the background
temperature TB= 3.5K reported by Penzias and Wilson. This cooling was

accompanied by the gradual appearance of ever larger and more complex stable
structures. There has been much speculation (mostly cosmological) about the
details of this evolutionary process. In such discussions it is usually
assumed that the cosmic background field is only weakly coupled to matter at
present. In this paper we will consider how the cosmic background field
might be coupled to very small "quantum mechanical" bodies and exercise
considerable influence on them, even though its influence might be
negligible for the bodies we directly experience as well as for much larger
"cosmological" bodies. In effect we are assuming that the cosmic background
field is the something "tangibly real" Schrodinger was convinced lay behind
the computational success of quantum mechanics. In particular, we will
derive energy formulas for the simplest atomic and molecular systems
discussed by Schrodinger in the collection of papers cited above. Along the
way we will mention analogs of the uncertainty and correspondence principles
and indicate how transition probabilities and intensity formulas might be
calculated. In the conclusion we will briefly describe how this theory might
fit into current discussions of the meaning of quantum theory.

Since quantum particles are now known to be residing in a bath of
fossil radiation, it seems natural to assume that the particle-wave duality
which they manifest may have its origin in this fact. In particular, the
duality of vacuum fluctuations inducing particles to radiate while particles
exhibit radiation reaction may be explained in this way. Dowling has
summarized the literature on this subject and has pointed out that any
separation of vacuum fluctuations and radiation reactions is purely mental
[7]. Either (or both) points of view may be adopted. Such
fluctuations/reactions are usually invoked to account for phenomena like
natural line widths. Here we will consider the possibility that they might
also explain the quantization of particle energy states.

The scalar field of an arbitrary charge distribution can be
represented by a sum over multipole potentials. Similarly, the field of an
arbitrary current distribution can be represented by a multipole expansion
of the vector potential. Likewise, an electromagnetic radiation field can be
represented as a mix of electric and magnetic multipole fields. Apart from
a sinusoidal time factor, the general solution to Maxwell's equations may be
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written as [8]

= 2 ,m[-(i/k)aM(Im)Vxgj(kr)Xjm + aE(",m)f,(kr)X. ]  (1)

=E - [ (i/k)aE(I,m)Vxf2 (kr)X2  + aM(I,m)g,(kr)X,] (2)

where the coefficients aE (2,m) and aM(2 ,m) specify the mix of electric and

magnetic multipoles in the magnetic field, B, and the electric field, K. The
radial functions f (kr) and g2 (kr) with k=21r/A=w/c are linear combinations

of spherical Hankel functions of the first and second kinds. The vector
spherical harmonics are

X [1/ (2+1)] L Y2m(,) (3)

where the angular momentum operator (transverse to the radial unit vector i)
is L=-i(-rxV) and Y2m(0, ) are scalar spherical harmonics. Here we desire

solutions near the origin so we may take f (kr) and g,(kr) to be the

spherical Bessel functions j2 (kr). We are also interested in the long

wavelength approximation with kr<<l so

j,(kr) = (kr) /(21+l)!! (4)

and the radial factors in Eqs (1) and (2) decrease as 2 increases for given
r. Eq (3) can be written as a linear combination of scalar spherical
harmonics with the same I and m raised or lowered by unity or left

unchanged. Consequently, the second terms in Eqs (1) and (2), namely, (E)
' Im

and (M) both have the same magnitude determined by j,(kr). The first terms2m'

in these equations, namely, 0(M) and E(E) are (+i/k)j,(kr) times the curl
'm Im' -

of Eq (3). Similarly, we may choose cylindrical or plane wave expansions
19].

3. Harmonic Oscillator

Here we will begin with a one-dimensional molecular oscillator which
has no need of angular factors (2=m=O). Since the infrared wavelengths of
interest are much larger than the molecular dimensions, the cosmic
backgrolind field may be represented by a Fourier series harmonic in time

3



with constant coefficients:

F - nToFn - nT0fn exp[i(n+l)wt] (5)

A similar three-dimensional representation for periodic solutions in a large
box leads to an equivalence between Maxwell's equations and the equations of
motion of a set of harmonic oscillators [10]. We note that the frequency w
in Eq (5) is arbitrary and may be chosen to fit the needs of a particular
problem. A Fourier integral representation may be more appropriate for some
problems.

In calculating the energy density of this field the frequency of

occurence of the nth normal mode with energy nhv is exp[(-nhv)/(kT)] where h
is Planck's constant and k is Boltzmann's constant [11]. If we let a -
(hv)/(kT), the average energy is

n (nhv)e na hv e-a/ (l-e'a 2 hv (6)
n 0 t -1/ (1-e- ) = (ea -1)
n=O

Multipiication of this equation by the num.bcr of modes per unit volume in a
2 3

frequency interval [(8rv )/c ] where c is the speed of light gives Planck's
law as is well known.

When Schrodinger [12] applied his theory to the harmonic oscillator

with reduced mass m he introduced the displacement awplitude. A-7/(ow),

where Y=h/(2n) and w=2ffv. Classically this is multiplied by an harmonic time
factor like cos(wt), so the second time derivative or force per unit mass is

2

proportional to w A=wj( w)/m . The amplitude of the force per unit mass, f,
0n

th
exerted by the n mode of the cosmic background should be proportional to
this factor as well as to the frequency of occurence of this amplitude,
which we take to be the square root of Boltzmann's factor, exp(-na). We also
(somewhat arbitrarily) take the proportionality constant to be exp(-a/2)
which insures that this force is very small for frequencies of interest. For

13 24

example, if v>10 then a>137 for TB=3K at present. If m0= 10 g for a

-35
small molecule, then m f 1= 0 dyne. Thus we assume that00

fn - Wo -m° exp[-(n+l)(a/2)] (7)

4



The field in Eq (5) has no time-independent component and represents
an infinite collection of indistinguishable photons. The field intensity of

a component is found as usual by squaring the amplitude, using the complex

conjugate so F F is independent of time. We may use F F instead of
nn nn

Boltzmann's factor in Eq (6) to find

* a
S(nhv)(F F *) / (F F) h,/(e a-1) (8)

n0 n n I- nn)

which again gives Planck's law when multiplied by an appropriate factor,

since the constant parts of F F cancel in numerator and denominator.
nn

Similar results can be obtained from spherical or cylindrical wave

representations by integrating over orthonormal radial and angular
functions.

In the macroscopic world an undamped oscillator is known to be an

unrealistic idealization and to maintain the oscillations, forcing must be

included as well. Let us assume that this is also true for molecular

oscillators and include a damping term in the equation of motion. A linear

damping constant has the dimensions of a frequency and to be commensurate

with the force above should have the form

b = 6w exp(-a/2) (9)

where 6 is a dimensionless constant. The equation of motion is then

2
x + b ± x 5F (10)

as for any linearly damped, forced harmonic oscillator. Here x is the
displacement from equilibrium while w is the natural frequency of the
oscillator. We could use w instead and then choose the arbitrary

frequency w=w0 in Eq (5), but this amounts to the same thing. The

dimensionless factor 6 is for example,

6 = p/(er o ) << (1)

where p is the electric dipole moment (possibly induced) of a diatomic

molecule, r >>x is the equilibrium interatomic distance, and e is the
O

14 .1

electronic charge. If w,-lO s so a>137 as mentioned above, then
_16 1

b<lO s The solution to the homogeneous equation is a transient

5



proportional to exp[-(b/2)t] and would not yet be negligible if b were this
17 10

small for 10 s - 10 years, using present estimates of the age of the
universe. Of course in a younger, hotter universe Eq (10) probably did not
apply. Most likely a nonlinear description would be needed. For sudden
changes we usually expect large transients, but for a very gradual
evolutionary cooling during the time when Eq (10) might apply we expect
negligible transient amplitudes to begin with. We will assume them to be
zero and retain only the solution to the inhomogeneous equation. This has
the usual form

x = n An expii[(n+l)wt - an] (12)

with

2 2 2 2 2 2 2
A =6 f / /[(n+l) W - ] + b (n+l) W (13)

and
2 2 2

tan a = b(n+l)w / [w (n+l) W ] (14)

2 2 2
For n>O, a -0 since b<<w, while a -r/2. For n>O we can neglect b (n+l) w inn 0
Eq (13), so

2 2 2 2
An = (Sf/ ) / (n +2n) < (6f/w )/n (15)

while for n=0,

A = 6f /(bw) = Y/(mw) (16)
0 0 0

from Eqs (7), (9) and (13). Clearly the n=0 term dominates in Eq (12). In
fact, it can be larger than all the other terms put together. From Eqs (7)
and (15) we find

n~1 An < (6/w2 ) (fn/n 2 -< /(M W) eaa/2 (e- na/2/n ) (17)

The summation in the last form of Eq (17) is the dilogarithm and is equal to
Spence's integral with a maximum value near unity (13]. In this case, if we
use Eq (16) in Eq (17), we find A > Z A as stated above. From Eq (15) we

o n n
note that An decreases with increasing n in such a way that An >exp(a/2)An+I .

6



For the cosmic background field we have used the traditional
equivalence to an infinite set of oscillators with discrete frequencies.
Since the background is a continuum with all frequencies present, let us
consider perturbations by frequencies which are arbitrarily close to the
natural frequency w. If we let q=(n+l)w=w for n O instead of integer, we see
that f in Eq (7) is practically independent of q under these conditions,n

while b in Eq (9) is exactly independent of q. From Eq (13) we see that
2 2 1 6

A (q)=.5A (w) for (q-w)=.5b<10 , qw and q+w=2w so the intensity is
reduced to half its peak value for very small departures from W. The
smallness of b makes the peak very sharp at present, and as the universe
continues to cool, T B0 and b-0, so the peak approaches a delta function.

Because of the dominance of Ao, Eq (12) is approximately

x = A exp[i(wt-r/2)] = (-i)A exp(iwt) (18)

and the x,x phase trajectory given by Ea (12) is a slightly perturbed
ellipse, which would be an asymptotic limit cycle if there were a transient.

If we multiply Eq (10) by m (xdt) =m (dx) and integrate to find the
0o

oscillator energy we see that

2
E = .5mo(wAo) = .5y = E (19)

when we use Eq (16). This is the expectation value of the energy over times
long compared to a period T=27/w since the sum of all the other terms

arising from 6F and bx are negligible by comparison. Integrals over products
with unequal n vanish exactly, while the sum over terms with equal n
vanishes approximately over the observation times to which we are limited in
spectroscopy.

9 2 4 1 4 - 1
We note that A in Eq (16) is about 10 cm if m =10 g and v=l0 s

0 0

a reasonable estimate for a vibration amplitude. For much larger masses like
those of our direct experience, A is completely negligible unless the

frequency is extremely small, requirin6 observation times beyond our
abilities. This agrecs with the idea that the cosmic background radiation
field has a negligible effect on large masses and is the analog of the
correspondence principle. However, this does not rule out the possibility
that this radiation field might influence the motion of a slowly oscillating
universe. Of course such a speculation cannot be affirmed or denied because
our longest observation times are so severely limited compared to what would
be required.

7



Eq (19) is not quite exact since the lead term in Eq (12) is perturbed
by other modes in the background. Without these perturbations, the root mean

square amplitude over a period would be A0 /,F, since the average of the sine

squared or cosine squared is 1/2, using the real part. Similarly, the rms

momentum would be moA// and the product of these two quantities would be

2

m 0A o/2 = V/2. However, because of the perturbations, the actual amplitude,

A, is slightly larger than A . Consequently,

2

m 0wA /2 > )9/2 (20)

which is the analog of Heisenberg's uncertainty principle applied to the
harmonic oscillator. In Schrodinger's wave mechanics we arrive at this
result by using the ground state wave function, a Gaussian distribution in
configuration space. Here we are using the rms amplitude of a perturbed
oscillator in physical space. Of course we cannot measure this amplitude any
more than we can measure the Gaussian distribution. The best we can do is
measure frequencies which are absorbed or emitted over many vibration
periods.

Schrodinger considered it i paradox that quantum mechanics should
describe a system as a superposition of all imaginable configurations and
supposed that there must be some "tangibly real" frequencies responsible for
spectroscopic observations. In the present view we see that the real cosmic
background frequencies lead to a superposition of all possible states in Eq
(12). With only the cosmic background present (in the absence of an
observer) the oscillator exists with one state dominant. If an observer adds
a second electromagnetic field containing one or more of the higher
frequencies in Eq (12) in equal amounts, then resonance can occur with one
or more of the modes already present. If the second field is strong enough,
an observation over many periods tells us that some of the applied energy
has been absorbed. This leads us to say that transitions have occurred to
higher energy states. In the present theory the dominant term in Eq (12) for
. particular molecule can become one of the higher modes. In an ensemble of
identical molecules individual molecules will be vibrating in different
modes, shifting from one mode to another as photons are absorbed and
emitted. At any moment most will vibrate in the lowest mode with
successively fewer in higher modes. The relative number in each mode will be
governed by the likelihood of occurence of each mode in the background field
if all modes are equally represented in the applied field. If a particular
mode dominates in the applied field, this field can govern the distribution
and population inversions are possible.

8



The applied field can also be represented by a Fourier series with
coefficients controlled to a great extent by an experimenter in the
laboratory. The interaction energy is the expectation value

- - fTEa(dt)* (21)

where E now stands for the external field represented by a Fourier series.a

The solution for x in Eq (12) will have added to it terms with amplitudes
similar to Eq (13) but with the coefficients of the Ea series replacing the

f n. These new amplitudes can add to the old ones and determine new dominant

terms as explained above. Only terms with matching frequencies do not vanish
in the integration over a period in Eq (21). In this theory we note that
transitions to any frequency mode which is reinforced can occur even in the
linear approximation. The assumption that fn is a probability amplitude has

already been used in deriving Planck's law above and can be used again here
to account for the reduced intensity of higher frequency absorption lines.
As we know, Schrodinger disliked the interpretation of his wave function as
a probability amplitude. Perhaps he would have liked the present description
better since he was a disciple of Boltzmann.

From what has been said so far, it is clear how this theory can
describe the fact that integer multiples of a fundamental frequency are
absorbed by an ensemble of molecules in an applied field. This can also be
summarized by using the traditional energy level scheme

E n (n + .5)yw (22)n

with n=0 giving Eq (19), agreeing with Schrodinger's result [12]. As usual,
the fact that the higher frequencies absorbed are not quite evenly spaced on
a frequency scale can be accounted for by using an anharmonic restoring
force. A nonlinear restoring force of the "softening" type in Eq (10) can
account for the fact that the line spacing decreases slightly as the
frequency increases. This is also required to explain dissociation.

In summary, we are assuming a continual interaction between radiation
and matter which is ususally elastic, that is, without detectable energy
change in either field or particle. Occasionally an inelastic interaction
will occur and a matter particle will acquire a new mode of vibration from
the field, even in the almost empty space between galaxies. Since cosmic
background photons are ordinary photons their action is enhanced by stellar
photons. The greater photon density inside galaxies leads to a greater
frequency of excited particle states, so we can observe the spectra of
interstellar molecules like CH and CN. Further enhancement occurs on the

9



surface of a planet like the earth which is close to a sun, and even greater
enhancement occurs inside a star like our sun. In addition to such natural
variations in photon density, man has learned to produce local variations in
the intensity and composition of electromagnetic fields such that population
inversions are even possible. Such added fields mask but do not eliminate
the effects of the cosmic background field.

4. Free Mass
2

If there is no restoring force in Eq (10) then w -0 and this equation
can describe a small mass like an atom or electron moving with constant
velocity (x=0) in the isotropic background field. Since the distances
covered can be much larger than a wavelength we can no longer use the long-
wavelength approximation. Let r be the particle coordinate to emphasize the
fact that we are no longer dealing with a small vibration amplitude, x. Let
R be the location of a point on a travelling wave in the background field.
Eq (10) with 6=1 becomes

bi - by - f exp[i(wt-kR)] (23)

for a wave moving in the same direction with n=0. Both v and the phase are
constants so P=c=w/k. Squaring Eq(23) in the usual way gives

2 2
v _(fo/b) =hv/m by Eq (16), a relation which may also be written as

h/(m V) = v/v = A (24)

which defines a wavelength A associated with a particle of momentum m0v

moving in the cosmic background. In deriving Eq (24), de Broglie [14]
defined the wavelength to be V/v where V-c2/v is a superluminal phase

2 2 2

velocity and v=W/h for relativistic energy W=m0 c /l-(v/c) . When (v/c) <<l,

2 2 2
V=moC /h and A-(c /v)/(m0c /h) which is Eq (24). Here we have derived the

same relation by starting with the motion of a non-relativistic particle
moving in the cosmic background field. This gives a physical basis for Eq
(24) and eliminates the need to postulate an associated wave.

Before continuing let us make some qualitative remarks. The cosmic
background field (often together with other photon fields) continually
interacts with every particle in the world which possesses a permanent or
induced electromagnetic multipole moment of any order. For example, if free
particles of this type pass through a slit (or double slit or crystal) one
at a time and register on a detector screen, each free particle as well as
the particles .-,mposing the slit walls and screen interact with the

10



background (and other) fields, modifying them and being modified by them
during the entire time of an experiment. In this way they continually
interact with each other, communicating at the speed of light. If the slit
width is sufficiently small compared to the particle wavelength in Eq (24),
diffraction effects can be detected. Particles passing through the center of
a slit are undeflected since they are equally influenced by each wall. Other
particles will be deflected if they pass closer to one wall than the other,
because a greater pressure is exerted by the electromagnetic field emanating
from the nearer wall. Analogies might be made with the radiation pressure
exerted on the particles of a comet passing near the sun. The comet develops
a large tail pointing away from the sun and a small tail (sometimes visible)
pointing toward the sun. The radiation pressure exerted by the modified
cosmic background and other electromagnetic fields emanating from slit walls
is very weak by comparison, but the particles deflected are comparably
small. We cannot control the exact approach path of each particle and so
control its deflection. However, we can describe the overall deflection
pattern in terms of wave theory, using the wavelength and phase as well as
the slit widths and separations as parameters. Each particle passes through
a particular part of a particular slit. However, its associated cosmic
background wave passes through all parts of each slit. Thus electromagnetic
waves replace Schrodinger's waves in ordinary theory. Similarly, they
replace the pilot waves of de Broglie-Bohm theory or the background
fluctuations of Dirac theory.

If the walls in a single slit experiment are geometrically identical
and are made of the same material, the resulting diffraction pattern will be
symmetric about a center line parallel to the slit. If one wall is removed
the pattern is asymmetric. Most of it will lie on the open side of the
straight edge, but a few particles will be bent behind the wall. This is
analogous to the large and small tails on a comet near the sun. If both
walls are geometrically identical but each is made of a different material,
say beryllium and uranium, the pattern may also be asymmetric with respect
to the previous center line. This could indicate that different materials
modify the background fields differently, resulting in a net lateral
component of deflection even at the center of the slit. We might also expect
geometrically identical circular apertures in walls made of different
materials to produce different patterns of concentric circles, if such
modification differences are strong enough.

Neutrons have no electric monopole (charge) and may or may not have a
very small electric dipole moment. Their diffraction is due principally to
their magnetic dipole moment. What about fields other than electromagnetic?
There might be as yet undetected cosmic background fields corresponding to
nuclear, weak and gravitational forces. However, we shall not speculate
about them here.

A quantitative treatment of these ideas is desirable and will be
attempted in another place. Now let us return to the program we have
outlined for this paper.

11



5. Rigid Rotator

Since r-r 0 is constant for the rigid rotator and

2 2
V YI- [1(12+1)]/r ]y I2' the curl reduces to [15]

AI

VX 2 I - _i( r/r) 0~) YI(OM) (25)

Consequently, the first terms in Eqs (1) and (2) have the same magnitude
which is proportional to [jI(kro)/(kr0 )I. From Eq (4) and kr «1<< we see that

0I

the second terms in Eqs (1) and (2) are negligible compared to the first for
given 1.

The amplitude in Eq (7) must be multiplied by the above radial and
angular factors for problems with spherical symmetry like the rigid rotator
and hydrogenlike atoms. When we do this the amplitude is not isotropic.
However, the expectation value of the intensity obtained by squaring and
integrating over the volume will be isotropic. Here we are interested in the
near-field, long-wavelength approximation subject to the constraint rur so

we can represent the cosmic background field modes by

F - f exp[i(n+l)wt E [j (kr )/(kr )] Eq(+) Y (,) . (26)
n n I'm 1 0 o

The equations of motion for the three-dimensional isotropic oscillator
are then (letting 6=1 for simplicity)

2
i. + bk. + w x. = i F - F (27)
J J j n n

with j-1,2,3. For variable r, the F nwhich represent the electric or

magnetic field components will have more general forms than Eq (26).
However, for the rigid rotator Eq (26) applies since we have the constraint

2 2

2x; - (28)

The first time derivative of Eq (28) gives

z x.x. - 0 F F(29)
J J n

12



while the second time derivative gives

2 2 2 2

v - x. -Z x.. - w r F x. (30)
3 3 3 j3 0 3 3

The last form in Eq (30) was obtained by using Eqs (27) to (29). The
2 22

expectation value of Eq (30) is <v >_W r0 . The solutions to the undamped,

unforced form of Eqs (27) are sinusoidal functions of time with different
amplitudes and phases in the absence of the constraint. If the phases are
the same we have pure vibration. If the amplitudes are the same and the
phases are properly chosen, we have pure rotation. When we add the damping
and forcing perturbations given above, we must keep in mind the fact that in
the spherical harmonics Y9, ) 9 and -p are not functions of time but

express the radiation patterns experienced by the rotator. All time
dependence for the solutions of Maxwell's equations is expressed in the
exponential factors. Consequently, a differentiation of a solution, xj, with

respect to time leads to multiplication by u.

If we let the amplitude A =r in Eq (16) and solve for w we find0 0

2

w= /(mr ) /I (31)

2
when we introduce the moment of inertia of the rotator I=m r . The00

components of the angular momentum involve sums of products like m x.x.

2
which are proportional to m r w = lh = )A by Eq (31). A generalization of Eq

(13) leads to

An m = A n[j(kro)/(kro)] ( Y249, ) (32)

when we use Eq (26). The expectation value of the amplitude squared is found
by integrating over the volume with suitable normalization. For example, we

2 2
find <Ao~m>= r o(1+i). A time differentiation leads to multiplication by w

2 2 2
and to <v >-w r o(2+i), so the rotational energy is

2 2 2 2
E - .5m <v > = - (2+1)y /(21) - L /(21) (33)

r o

13



2

when we use Eq (31). This agrees with Schrodinger's result [16]. Here L is
the square of the total angular momentum. The dipole term with 1-1 gives the
lowest rotational energy, while 1-0 would correspond to pure vibration.

If, for example, the rotator is a heteronuclear diatomic molecule with
a dipole moment, it can interact with a second electromagnetic field added
to the cosmic background. This second field may also be represented as a sum
over frequency modes and multipoles. Of course in a laboratory the expansion
coefficients in the representation of the applied field can be controlled to
a considerable extent, unlike the cosmic background. When resonant
frequencies and multipoles are strong enough in the applied field, certain
terms in the solutions will become dominant and the system will be observed
to be in a new state. Since both fields depend on spherical harmonics,
selection rules may be derived in the usual way. The addition of stationary
electric or magnetic fields will destroy the spherical symmetry and require
the use of m values higher than unity [17]. Of course a rigid rotator is an
idealization for a molecule. The vibrating rotator can be treated as usual
by using perturbation methods.

Schrodinger also considered the case in which the axis of rotation is
fixed, that is, a two-dimensional isotropic oscillator subject to the

2 2
constraint r=Jx +y =ro. In this case we can use cylindrical functions to

represent electromagnetic fields, including the cosmic background field [9].
Instead of Eq (26) we have

sin

F = f exp[i(n+l)wt] k Jk(Aro) J c (ky) (34)n n

for the dominant terms in the near-field, long-wavelength approximation.
Here A is the propagation constant. Since k appears in Eq (34) instead of

J T) as in Eq (26), it is clear that the rotational energy for a fixed
axis is

S 22 2

E = .5m <v > = k Y /(21) - L /(21) (35)r o

2 2 2

which agrees with Schrodinger's result [18]. In this case, since <v >=rw

the angular momentum is

2
L - m r - I - k( (36)

from Eq (35). From Eq (36) with k=l,2 ... we see that the frequency of a two-
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dimensional oscillator subject to a circular constraint is quantized, a
result we will use in the next section.

6. Hydrogen Atom

Connections between Schrodinger's equations for the hydrogen atom, the
spherical rotator and the four-dimensional isotropic oscillator (expressed
in terms of generalized Euler angles) were discussed by Ikeda and Miyachi in
1970 [19]. Five years earlier, Kustaanheimo and Stiefel had generalized the
Levi-Civita tranformation and showed the equivalence of the three-
dimensional Kepler problem of celestial mechanics to the four-dimensional
isotropic oscillator [20]. Ikeda and Miyachi did not use their results.
However, in the last fifteen years many workers have realized the usefulness
of the Kustaanheimo-Stiefel (K-S) transformation in discussing the quantum
mechanics of the hydrogen atom, especially in stationary electric or
magnetic fields, and have extended the discussion to all formulations of
quantum mechanics. The literature on this subject has recently been
summarized by Kibler and co-workers [21]. Even more recently, Chen [22], has
used a variation of the K-S transformation to show that the classical
Coulomb-Kepler problem in three dimensions is equivalent to a pair of
classical two dimensional oscillators possessing the same angular momentum,
a result he had previously derived in the quantum mechanical case [23]. Chen
notes that an application of the Sommerfeld-Wilson quantization rules to the
classical case leads to the same results as in quantum mechanics. Chen and
Kibler [24] have discussed the role of the K-S constraint condition in
determining the phase relationship for the pair of two-dimensional
oscillators. They point out that the equality of the angular momenta for the
pair of oscillators also appears if squared parabolic coordinates are used
to separate the Schrodinger equation for the hydrogen atom.

The solution of the classical Coulomb-Kepler problem is an elliptical
orbit with angular momentum constant in magnitude and direction, as is well-
known. Imposing an isotropic cosmic background field on this orbit will not
change it, at least on average, since the same perturbation will be felt no
matter what the direction of the angular momentum. Consequently, the orbit
will on average remain an ellipse oriented in the same direction. The
dominant part of the perturbed solution will be the unperturbed ellipse,
just as the dominant part of the linear oscillator solution is the
unperturbed solution.

There are many ways to approach the perturbed hydrogen atom problem.
Since the perturbations are small and periodic in time, we might follow the
advice of Kustaanheimo and Stiefel [251 and use the two-dimensional Levi-
Civita transformation with regularization of the time. This suggestion has
been developed for the Kepler problem by Stiefel and Scheifele [26]. On the
other hand, we might use Chen's transformation reduced to two dimensions
without regularization. One of Chen's Euler angles is a=9/2 where 0 is the
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polar angle in spherical coordinates. If 6-r/2 so the motion occurs in the
x,y plane then Chen's circular oscillator radii u and v are equal. Since the
angular momenta are equal, the angular frequencies must also be equal and
the angles differ by an arbitrary constant which we may choose to be zero.
Still another approach might be to regularize the motion without any trans-
formation of the dependent variables. This possibility was mentioned in
passing by Stiefel and Scheifele [27] but not developed at all. Here we will
pursue this last approach, since it is worth developing and leads rather
directly to the energy formula we wish to derive.

The vector equation of motion is

2 3 -

+ (K 2/r 3) _ P - bT (37)

2 2

where r = xt + yj + z in cartesian coordinates and K = Ze /m° for a

hydrogenlike atom with atomic number Z, reduced mass mo, and electronic or

protonic charge e. If we number the coordinates in the usual way the
components of Eq (37) are

2 3
x. + (K /r )x. = F. - bx. (38)3 .3 .3 .

where modal expansions can be used for the components of the isotropic
field, F. Here

2 2
r = Z x. (39)

.3

with j=1,2,3. Time differentiation of Eq (39) gives

rr = Z x.x. (40).3 .3.

while time differentiation of Eq (40) gives

.2 2

rr + r= + x x.) (41)

We can take the scalar product of r with Eq (37) or multiply each Eq (38) by
the corresponding x. and add the results to find

2 3 2

F.x. + (K /r )(rr) - Z (F.x. - bx (42)
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where we have used Eq (40). The value of the right side of Eq (42) over
times long compared to a period is expected to be zero, so the integral of
the left side gives the expectation value of the energy per unit mass

2 2
E/m - .5 Z x. K /r (43)

o 3JJ

as usual. Similarly, we can take the vector product of r with Eq (37) and
integrate to find that the angular momentum components have constant
expectation values. If we put Eq (43) in Eq (41), we obtain

= 2 2

Zx x. (rr + r ) 2(E/m + K /r) (44)
0

Now take the scalar product of r with Eq (37) to find

2 3 2

Z x.x. + (K /r )(Z x.) = Z (F xj bxji.) (45)
j i i :i j J JJ

and use Eqs (39), (40) and (44) in Eq (45) multiplied by r to obtain
*2 2

r(ri + r) - (2E/m )r - K - r(Z F.x. - bri) (46)

Finally, let us introduce the fictitious time r defined by the relation
2 2 2

dt=rdr to regularize Eq (46). This gives r'=ri and r''=r r+(r') /r=r(rr+r )
where a prime denotes differentiation with respect to r. Eq (46) becomes

2 2
r'' + (2w) r = K + r(Z F.x. - br') (47)

2
where (2(,) = -2E/mo= 2hK > 0 since E<O for an ellipse. This defines the

positive energy per unit mass, hK. The expectation value of the right side

2
of Eq (47) is K , so the dominant part of the solution is

r = a - ac cos(2wr) (48)
0

2 2 2
where a - K /(2w) - K /(2hK), or

2 2
-E/m - hK - K /(2a) - 2w (49)
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the usual result that the energy is independent of the eccentricity, CO and

depends only on the semi-major axis of the ellipse, namely, a. Eq (48) is
the three-dimensional version of Eq (13), p. 39 of reference 26 and becomes
the same if we let z=0, for example. Eq (49) is the same as Eq (18) in that
reference. Stiefel and Scheifele obtained these results by using the Levi-
Civita transformation with time regularization to show the equivalence of
the Kepler problem and the motion of a two-dimensional oscillator. In terms
of the fictitious time they find

x = a[cos(2wr) - eo] and y = a/l-e ° sin(2wT) (50)

It is interesting to note that the virial theorem also leads to eq
(49). Since the average of the kinetic energy over a period is (-.5) times

2
the average potential energy, the right side of Eq (43) becomes [-K /(2r)]
or Eq (49), since a is the average value of r, namely, half the sum of the
aphelion and perihelion distances.

We can also use Eq (48) to find the time

t = f r dr - ar - [(ac0)/(2w)] sin(2wr) (51)

When t = T, a period, r = w/w, so Eq (51) becomes Kepler's third law:

T = aif/w = 2n a3/ 2/K (52)

since w = K/(2§ ) from Eq (49). Eq (52) is also Eq (27) on p. 41 of
reference 26. If we set the last form of Eq (52) equal to 21r/w and square,
we find

3 2 2 2 2
a - K / = (Ze /m)/O (53)

Since the expectation value of the energy in Eq (49) depends only on a and
not on e 1 it is the same for eo =0, r=a=r in Eq (48) (a circle) as for any

other value of c which is consistent with an ellipse. Since Coulomb-Kepler

motion is equivalent to a two-dimensional oscillator, we may consider the
particular case of a circular oscillator or rigid rotator and let r 0-a in Eq

2
(36) to find u-(ny)/(m0a ), using n-l,2 ... instead of k. Putting this into

Eq (53) gives
2 2 2

a = n X /(m Ze ) (54)
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Putting Eq (54) into Eq (49) gives

24 22E - -(mo0Z e )/(2n Y ) (55)

in agreement with Schrodinger's result when Z-1 [28].

7. Summary

In this paper we have suggested that the cosmic background radiation
field continually exchanges energy with small bodies like atoms and
molecules, providing them with a variety of modes through which they can
interact with other systems. In this view particles and waves are separate
entities which interact and are not complementary aspects of the same thing.
We have sketched this theory only for the simple systems which were
discussed by Schrodinger in his early papers on quantum mechanics and have
been content for the most part with deriving his energy expressions. Clearly
much remains to be done to complete this theory and extend it to other
systems.

Let us reflect briefly on what Schrodinger might have thought of this
description. He probably would have liked it, since it uses real frequencies
to explain the success of his wave function. His wavefunction is viewed as
one of the elegant ways which have been devised for surveying possibilities
and probabilities rather than as an entity which "collapses" when an
observation is made. This agrees with Schrodinger's own perception of his
wavefunction and allows his cat to "walk by himself" as cats are accustomed
to do. However, this description does not attempt to substitute waves for
particles as Schrodinger did briefly. It does include probabilities, but
after the manner of Boltzmann and probably to Schrodinger's liking.

Many of the measurement problems discussed in connection with quantum
mechanics [29} do not arise in the present description, since only
electromagnetic waves in physical space rather than Schrodinger waves in
configuration space are used. In the context of such discussions, the
present theory can be characterized as a realistic description of a single
universe. It is holistic in the sense that the particles which compose the
measuring apparatus as well as the system being measured are in constant
communication via exchanges through (at least) the cosmic background field.
In the same sense it is local if such exchanges are limited to the speed of
light (unlike de Broglie's superluminal waves). Of course these comments by
no means answer all of the questions which have been raised in such
discussions and much remains to be done.
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